翻訳と辞書
Words near each other
・ Gisela Taglicht
・ Gisela Toews
・ Gisela Trowe
・ Girón, Azuay
・ Girō Seno’o
・ GIS (disambiguation)
・ GIS and aquatic science
・ GIS and environmental governance
・ GIS and hydrology
・ GIS and public health
・ GIS and RS (University of Pune)
・ GIS applications
・ GIS Day
・ GIS file formats
・ Gis Gelati
GIS in archaeology
・ GIS in environmental contamination
・ GIS Live DVD
・ Gis, Iran
・ Gisa (bishop of Wells)
・ Gisa Pshukov
・ Gisa Wurm
・ Gisaburō Sugii
・ Gisacum
・ Gisagara District
・ GISAID
・ Gisaku
・ Gisan Zenkai
・ Gisant
・ Gisara


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

GIS in archaeology : ウィキペディア英語版
GIS in archaeology
GIS or Geographic Information Systems has been an important tool in archaeology since the early 1990s.〔Conolly J and Lake M (2006) Geographical Information Systems in Archaeology. Cambridge: Cambridge University Press.〕 Indeed, archaeologists were some of the early adopters, users, and developers of GIS and GISCience, Geographic Information Science. The combination of GIS and archaeology has been considered a perfect match, since archaeology often involves the study of the spatial dimension of human behavior over time, and all archaeology carries a spatial component.
Since archaeology looks at the unfolding of historical events through geography, time and culture, the results of archaeological studies are rich in spatial information. GIS is adept at processing these large volumes of data, especially that which is geographically referenced. It is a cost effective, accurate and fast tool. The tools made available through GIS help in data collection, its storage and retrieval, its manipulation for customized circumstances and, finally, the display of the data so that it is visually comprehensible by the user. The most important aspect of GIS in archaeology lies, however, not in its use as a pure map-making tool, but in its capability to merge and analyse different types of data in order to create new information. The use of GIS in archaeology has changed not only the way archaeologists acquire and visualise data, but also the way in which archaeologists think about space itself. GIS has therefore become more of a science than an objective tool.
==GIS in survey==
Survey and documentation are important to preservation and archaeology, and GIS makes this research and fieldwork efficient and precise. Research done using GIS capabilities is used as a decision making tool to prevent loss of relevant information that could impact archaeological sites and studies. It is a significant tool that contributes to regional planning and for cultural resource management to protect resources that are valuable through the acquisition and maintenance of data about historical sites.
In archaeology, GIS increases the ability to map and record data when it is used directly at the excavation site. This allows for immediate access to the data collected for analysis and visualization as an isolated study or it can be incorporated with other relevant data sources to help understand the site and its findings better.
The ability of GIS to model and predict likely archaeological sites is used by companies that are involved with utilizing vast tracts of land resources like the Department of Transportation. Section 106 of the National Preservation Act specifically requires historical sites as well as others to be assessed for impact through federally funded projects. Using GIS to assess archaeological sites that may exist or be of importance can be identified through predictive modeling. These studies and results are then used by the management to make relevant decisions and plan for future development. GIS makes this process less time consuming and more precise.
There are different processes and GIS functionalities that are used in archaeological research. Intrasite spatial analysis or distributional analysis of the information on the site helps in understanding the formation, process of change and in documentation of the site. This leads to research, analysis and conclusions. The old methods utilized for this provide limited exposure to the site and provide only a small picture of patterns over broad spaces. Predictive modeling is used through data acquisition like that of hydrography and hypsography to develop models along with archaeological data for better analysis. Point data in GIS is used to focus on point locations and to analyze trends in data sets or to interpolate scattered points. Density mapping is done for the analysis of location trends and interpolation is done to aid surface findings through the creation of surfaces through point data and is used to find occupied levels in a site. Aerial data is more commonly used. It focuses on the landscape and the region and helps interpret archaeological sites in their context and settings. Aerial data is analyzed through predictive modeling which is used to predict location of sites and material in a region. It is based on the available knowledge, method of prediction and on the actual results. This is used primarily in cultural resource management.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「GIS in archaeology」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.